Use of minimum risk approach in the estimation of regression models with missing observation

نویسنده

  • H. Toutenburg
چکیده

This article considers a linear regression model with some missing observations on the response variable and presents two estimators of regression coefficients employing the approach of minimum risk estimation. Asymptotic properties of these estimators along with the traditional unbiased estimator are analyzed and conditions, that are easy to check in practice, for the superiority of one estimator over the other are derived.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Estimation in Linear Regression Model: the Density Power Divergence Approach

The minimum density power divergence method provides a robust estimate in the face of a situation where the dataset includes a number of outlier data. In this study, we introduce and use a robust minimum density power divergence estimator to estimate the parameters of the linear regression model and then with some numerical examples of linear regression model, we show the robustness of this est...

متن کامل

Use of minimum risk approach in the estimation of regression models with missing observations

This article considers a linear regression model with some missing observations on the response variable and presents two estimators of regression coefficients employing the approach of minimum risk estimation. Asymptotic properties of these estimators along with the traditional unbiased estimator are analyzed and conditions, that are easy to check in practice, for the superiority of one estima...

متن کامل

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

THE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)

Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes.  Small area estimation is needed  in obtaining information on a small area, such as sub-district or village.  Generally, in some cases, small area estimation uses parametric modeling.  But in fact, a lot of models have no linear relationship between the small area average and the covariat...

متن کامل

Rotor Sizing of Helicopters Using Statistical Approach

This paper is concerned with the statistical model development issues, necessary for rapid estimation of the rotor sizing for single main rotor helicopters at the preliminary design stage. However, Central Composite Design (CCD) method, simulation-based data collection, linear regression analysis, mathematical modelsdevelopmentand validations through the analysis of variance (ANOVA) were perfor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007